skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nassr, Mostafa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pressure‐sensitive‐adhesives (PSAs) are pervasive in electronic, automobile, packaging, and biomedical applications due to their ability to stick to numerous surfaces without undergoing chemical reactions. These materials are typically synthesized by the free radical copolymerization of alkyl acrylates and acrylic acid, leading to an ensemble of polymer chains with varying composition and molecular weight. Here, reversible addition−fragmentation chain‐transfer (RAFT) copolymerizations in a semi‐batch reactor are used to tailor the molecular architecture and bulk mechanical properties of acrylic copolymers. In the absence of cross‐links, the localization of acrylic acid toward the chain ends leads to microphase separation, creep resistance, and enhanced tack. However, in the presence of Al(acac)3crosslinker, the creep resistance remains unchanged and mostly the large‐strain mechanical properties are affected. This behavior is attributed to microphase separation, but also to a change in the energy required to break physical associations, and untangle and elongate associative polymers to large deformations. 
    more » « less